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Abstract

A 2D fourth-order compact direct scheme projection decomposition method for solving incompressible viscous

flows in multi-connected rectangular domains is devised. In each subdomain, the governing Navier–Stokes equations

are discretized by using fourth-order compact schemes in space and second-order scheme in time. The coupling between

subdomains is based on a direct non-overlapping multidomain method: it allows to solve each Helmholtz/Poisson prob-

lem resulting of a projection method in complex geometries. The major difficulty of the Poisson–Neumann problem

solvability is addressed and correctly treated. The present numerical method is checked through some classical numer-

ical experiments. First, the second-order accuracy in time and the fourth-order accuracy in space are shown by match-

ing with the analytical solution of the Taylor problem. The method is also tested by simulating the flow in a 2D

lid-driven cavity. The utility of the compact scheme projection decomposition method approach is further illustrated

by two other benchmark problems, viz., the flow over a backward-facing step and the laminar flow past a square prism.

The present results are in good agreement with the experimental data and other numerical solutions available in the

literature.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many physical process exhibit a wide range of space and time scales which may be numerically com-

puted. This requirement has led to the development of highly accurate schemes like spectral methods or

compact schemes. A relevant framework is the turbulence research area, in which the range of the physical

space and time scales increases with the Reynolds number. In this context, spectral methods or compact
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schemes have been intensively used in various way such as direct numerical simulation or large eddy sim-

ulation. However, these methods are limited to flows in rectangular computational domains with simple

boundary conditions. Some works showed that domain decomposition could be an efficient method to sim-

ulate turbulent flows in complex geometries defined by multi-connected rectangular domains [1–3]. This

work focuses on a 2D compact scheme projection decomposition method (PDM) applied to the numerical
simulation of 2D incompressible laminar flows. The pressure-velocity formulation has been selected for its

ability to simulate three-dimensional turbulent flows with one periodic direction [2].

Compact finite difference schemes achieve high order accuracy and good resolution properties without

increasing excessively the computational stencil size. Several authors [4,5] contributed to the development

of these schemes. Recently, they are again coming in use in derived forms, depending on applications: finite

differences or finite volumes [6–13]. Various successful works, based on compact schemes, include DNS and

LES of classical turbulent flows such as channel flow, wake or plane jet. Although compact finite differences

are extremely flexible in term of mesh generation and boundary conditions, geometries are restricted to
computational domains which can be trivially mapped into the standard [�1, 1] square. This restriction

is well known in the context of spectral methods [2,3]. Multidomain methods were introduced to overcome

this intrinsic limitation of spectral methods. A recent example of successful multidomain spectral method

application is the computation of rotating flows in a T-shape geometry, carried out by Raspo [3]. Her study

concerns a direct multidomain method in the vorticity stream function formulation of the two-dimensional

Navier–Stokes equations. However, the extension of this formulation to three-dimensional flows is quite

unsuitable.

In the context of the primitive variables formulation, the PDM was first introduced by Pinelli et al. [2]. It
consists in solving each elliptic boundary value problems, deduced from the classical projection method of

Kim and Moin [14], with a spectral multidomain method based on the weak formulation of the Steklov–

Poincaré operator. Despite the remarkable accuracy of this spectral PDM, the large stencil of spectral

methods is not suitable for complex flows and/or high aspect ratio geometries. In fact, a local singularity

or unsuitable outflow conditions could lead to global numerical instabilities [15]. Instead of using spectral

methods, high order finite differences may be an efficient alternative approach. They allow investigations of

more realistic problems where mesh refinements are needed to describe local shears. Taking into account

this feature, Danabasoglu et al. [1] adapted the original PDM of Pinelli et al. [2]. They derived a formula-
tion based on a mixed fourth-order central difference/spectral method on a non-staggered mesh. Hence,

they studied the flow over a step in a two-dimensional channel. However, as it was outlined by Morinishi

et al. [16], the fourth-order central difference defined on a non-staggered mesh is not able to fulfill classical

conservative properties, leading to unstable simulations of turbulent flows. In contrast, the fully staggered

arrangement of Harlow and Welch [17] presents several advantages. The pressure–velocity coupling is made

easier on a staggered grid. Indeed, Schiestel and Viazzo [8] reported that the discretization of the skew-sym-

metric formulation on a staggered grid conserves the kinetic energy and the momentum. Several works

showed that spatial discretization of the Navier–Stokes equations on a staggered mesh with high order
compact schemes is an efficient approach to simulate turbulent flows [6,8].

The purpose of the present work is to develop a two-dimensional PDM based on a fourth-order compact

scheme defined on a fully staggered grid. The fourth-order compact schemes and staggered grid were

chosen for their ability to simulate efficiently and accurately unsteady incompressible flows. The projection

domain decomposition is selected to extend computations of numerical solutions of the Navier–Stokes

equations on multi-connected rectangular domains. The strong formulation of Steklov–Poincaré operator

is adopted to solve each elliptic solver resulting of the projection method. Moreover, the Poisson–Neumann

problem is explicitly cleared-up without resorting to the capacitance matrix method unlike Danabasoglu
et al. [1]. In the present paper, only a two-dimensional version of the compact scheme PDM is presented.

If periodicity is assumed in one direction, the three-dimensional extension is possible by using Fourier series

expansion in the periodic direction [2].
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The organization of the paper is as follows. Section 2 describes the numerical method. The projection

method and spatial discretization of the Navier–Stokes equations are firstly given. Then, the multidomain

method for solving each Helmholtz/Poisson problem is presented. Finally, the first part is closed by a dis-

cussion on the solvability of the Poisson–Neumann problem. The second part is devoted to present the

numerical results. The accuracy test results are shown and classical steady two-dimensional benchmark
problems, such as the lid-driven cavity or the backward-facing step flow are investigated. The last section

focuses on the flow over a square prism.
2. Numerical method

2.1. Single domain approach

The governing equations for an incompressible fluid flow are:
ut þ ðu :rÞu ¼ �rp þ 1
Rer

2u in X;

r : u ¼ 0 in X;
ð1Þ
where u(x, t) and p(x, t) are, respectively, the velocity vector and the static pressure. The Navier–Stokes

equations are defined on a domain denoted X limited by a boundary noted oX. All variables are non-dimen-

sionalized by a characteristic velocity and length scale, and Re is the Reynolds number. The integration

method used to solve Eq. (1) is based on a semi-implicit fractional step scheme [14]. The convective terms

are advanced in time by using the explicit Adams–Bashforth scheme whereas the diffusive terms are ad-

vanced in time with the implicit Crank–Nicolson scheme. The resulting time discretized Navier–Stokes

equations are:
1
Dt ðunþ1 � unÞ þ rpnþ1=2 ¼ 3

2
NðunÞ þ 1

2
Nðun�1Þ þ 1

2Rer
2ðunþ1 þ unÞ in X;

r : unþ1 ¼ 0 in X:
ð2Þ
This semi-discrete form ensures a second-order time accuracy. In most DNS and LES applications, a wide

variety of projection methods are often used to solve Eq. (2). Projection methods consist in decoupling

pressure from velocity by solving firstly a provisional velocity and then an elliptic step to enforce the free

divergence constraint. In this work the projection scheme of Kim and Moin [14] was selected. It is com-

posed of three stages. First, the provisional field u* is determined by solving:
1

Dt
ðu� � unÞ ¼ 3

2
NðunÞ þ 1

2
Nðun�1Þ þ 1

2Re
r2ðu� þ unÞ;

n � u�joX ¼ n � unþ1joX; ð3Þ
s : u�joX ¼ s � ðunþ1 þ Dtr/nÞjoX:
Then, a projection stage is performed to ensure the incompressibility condition
unþ1 ¼ u� � Dtr/nþ1;

r � unþ1 ¼ 0: ð4Þ
The modified pressure /n+1 is related by the following Poisson–Neumann system:
r � r/nþ1 ¼r � u�
Dt

;

o/nþ1

on

����
oX

¼ 0: ð5Þ
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The final stage is the pressure updated from the modified pressure /n+1
pnþ1=2 ¼ /nþ1 � Dt
2Re

r2/nþ1: ð6Þ
The latter optional stage is performed to retrieve the pressure. This projection scheme was chosen because

of its advantages. Indeed, the absence of the pressure gradient term in the momentum equation for u* pro-

hibits error in the pressure gradient, which could accumulate in time [18]. This error could be particularly

prejudicial at the interfaces in the multidomain framework. According to discussions from different

authors, this projection scheme ensures second-order time accuracy for the velocity. Concerning the tem-

poral accuracy of the pressure, only first-order behavior was observed as in [18]. Several derived forms
of this projection method allow more accurate prediction of the pressure variable. Eventually, the Kim

and Moin scheme is selected for its robustness and its simplicity. Since convective terms are explicitly ad-

vanced in time, the projection method leads to Helmholtz and Poisson–Neumann problem for each flow

variable U (i.e., u*, v*, /):
DU� jU ¼ S in X;

BU ¼ g on oX;
ð7Þ
where j = Dt/(2Re) for the provisional momentum equations and j = 0 for the Poisson–Neumann problem.

The boundary conditions are defined by the operator B.

The variable disposition chosen in the present work is the standard fully staggered cartesian grid. It pre-

vents oscillatory numerical wiggles in the pressure field. Moreover, staggered grids associated with compact

schemes have shown some good capabilities to describe turbulent fluid flows [8,16].
The approximation of variable derivatives is derived from compact schemes described by Lele in [4]. This

implicit formulation exhibits very favorable accuracy and resolution properties with fewer stencil points in

contrast with central finite differences. In this work, fourth-order compact scheme operators (see Appendix

A) are rewritten, in such a way that derivative or interpolation of the variables are evaluated with a simple

matrix–matrix product. This choice was motivated to make easier future extensions of the present method

to sixth or higher order [4]. Hence, the following convenient discrete form of the two-dimensional discrete

Helmholtz problem may be formulated as [19]:
dxxUþ Udyy � jU ¼ S; ð8Þ

where dxx and dyy are square matrices, related to the second derivative operators, U and S are matrices with

dimension nx · ny, respectively, associated with the unknowns and with the right-hand side of the Helm-

holtz problem (7). Hence, taking into account the boundary conditions for eliminating boundary nodes

of Eq. (7) (see Appendix B), the discrete Helmholtz problem may be written as:
d�xxUþ Ud�yy � jU ¼ S�: ð9Þ
The superscript * refers to modified matrices deduced by eliminating boundary nodes. Diagonalization

technique is used to solve Eq. (9): the discrete problem is reformulated in the eigenvectors span, deduced

from diagonalization of d�xx and d�yy . In fact, if diagonalizable properties of the matrices d�xx and d�yy are

assumed, from Kx ¼ M�1
x d�xxMx and Ky ¼ M�1

y d�yyMy with Kx, Ky the diagonal matrices, and with Mx, My

the matrices of the eigenvectors, one gets:
Kx
~Uþ ~UKy � j~U ¼ ~S; ð10Þ
where ~U ¼ M�1
x UMy and ~S ¼ M�1

x S�My . This yields:
~Uij ¼
~Sij

kxi þ kyj � j
; 2 < i < nx � 1; 2 < j < ny � 1 ð11Þ
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with kxi and kyj the eigenvalues of the matrices d�xx and d�yy . Thus, the variable U is evaluated from

U ¼ Mx
~UMy . The diagonalization technique is a powerful tool in term of cpu-time cost, since the solution

computation requires only simple matrix–matrix products (the diagonalization of each modified operator is

carried out only once during the preprocessing stage). It is a real advantage if computations are performed

on vectorial architectures.
The eigenvalues were found always negative and real. However, mapping transformations involving too

strong grid stretching could entail to complex eigenvalues. In this case, computation is given up because the

cpu-time increases excessively. It should be noted that strong grid stretching could reduce the spatial accu-

racy [20]. Here, the loss of accuracy is minimized by using smooth coordinate mapping transform only. The

matter is outlined in the numerical experiments section. In the context of momentum equations, this

method does not involve particular difficulty since the denominator is never equal to zero. However, in

the context of the singular Poisson–Neumann problem, a difficulty arises since the denominator may van-

ish: indeed, Neumann boundary conditions cancel one eigenvalue per direction. In this case, the solvability
of the problem depends on the validity of the compatibility condition. In the favorable case, the compat-

ibility condition is fulfilled and the problem admits a solution up to a constant. If the compatibility condi-

tion is violated, the Poisson–Neumann problem is not solvable. This property is intrinsic to the discrete

spatial operators and will be discussed more precisely in Section 2.2.3.

2.2. Multidomain Helmholtz solver

2.2.1. Continuous formulation

The projection method reduces the time discretized Navier–Stokes equations into a set of Helmholtz

and Poisson–Neumann problems. A convenient way to compute solutions of these problems in complex

geometries is the multidomain method. This approach permits the substitution of the global Helmholtz

problem defined in X by a set of K sub-problems on a non-overlapped partition (Xk)k=1,K of X. These
problems are coupled by prescribing continuity conditions of the variables and its normal derivatives

across interfaces between each subdomain. These requirements, called transmission conditions [21], can

be written as:
oUi

on
¼ oUj

on
and Ui ¼ Uj for oXi \ oXj: ð12Þ
These transmission conditions must be fulfilled on each point of the interface. In this section, a countable

set of points {cik}k = 1, . . .,Ki
, located on the interface, are introduced without lack of generality (see Fig. 1).

Before describing the method in details, some descriptions are given about notations those are further
used in this section:

� Xi is a subdomain among the partition (Xk)k = 1,K of X.
� Cij is the interface between subdomains Xi and Xj.

� � i is the union of the interfaces of the subdomain Xi, and {cik}k = 1, . . .,Ki
are the nodes located on � i.

� vi corresponds to the boundary of the subdomain Xi excluding its interface: vi= oXi/� i.

Let us consider, in each subdomain, a solution of the linear problem (7) which is searched as the following
linear combination:
Ui ¼ ~Ui þ
XKi

k¼1

kik �Uik in Xi; ð13Þ
where ~Ui and �Uik are, respectively, the solution of the two following problems:



Fig. 1. An example of domain partition.
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D~Ui � j~Ui ¼ SjXi
in Xi;

Bi
~Ui ¼ gjvi on vi;

~Ui ¼ 0 on � i

ð14Þ
and
D�Uik � j�Uik ¼ 0 in Xi;

Bi
�Uik ¼ 0 on vi;

�UikðcipÞ ¼ dip for cip 2 � i:

ð15Þ
The Ki functions �Uik associated with the subdomain Xi are called harmonic extensions into Xi. Each function
~Ui defined to be solution of Eq. (14) is called homogeneous solution. In the previous linear combination, the

coefficients kik are obviously related to values of the whole solution U onto nodes belonging to the inter-
faces. From Eqs. (13)–(15), it may be stated that:
kip ¼ UiðcipÞ for cip 2 � i: ð16Þ
From the transmission conditions, Eq. (12) applied to the linear combination Eq. (13), for two adjacent

subdomains Xi and Xj yields:
o~Ui
on

þ
XKi

k¼1

kik
o�Uik

on

 !�����
cip

¼ o~Uj

on
þ
XKj

k¼1

kjk
o�Ujk

on

 !�����
cjp

with cip ¼ cjp 2 � i \ � j: ð17Þ
The latter equation, called Steklov–Poincaré equation, may be recasted in the following convenient form
o~Ui

on
ðcipÞ �

o~Uj

on
ðcjpÞ ¼

XKj

k¼1

kk
o�Ujk

on
ðcjpÞ �

o�Uik

on
ðcipÞ

� �
with cip ¼ cjp 2 � i \ � j: ð18Þ
The former relations written for each node belonging to the interfaces give K linear equations in which kk
are the unknowns. Written in matrix notation, Eq. (18) may be expressed as follows:
NK ¼ H ; ð19Þ
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where K is the column vector of the interface unknowns. The matrix N, called continuity influence matrix

(CIM) by Raspo [3], represents a discretized formulation of the Steklov–Poincaré equation in the context of

linear partial differential boundary values. It is obvious from Eq. (15) that the CIM depends only on the

definition of the Helmholtz operator and on its kind of boundary conditions (Dirichlet, Neumann or Ro-

bin). The column vector H depends on the right-hand side F of the Eq. (14) and on its boundary values g.
The next section, shows how this theoretical framework of the multidomain method is used in the discrete

level.

2.2.2. Discrete formulation

In the former section, the multidomain method was recasted in a convenient continuous formulation. In

the present section, the discrete formulation of the multidomain method is considered. For convenience and

without lack of generality, we focus on the Poisson problem defined on a rectangular domain split into two

rectangular non-overlapped subdomains (the extension to the Helmholtz problem is quite similar). The node
distribution chosen hereafter is the variable pressure layout corresponding to the Poisson–Neumann prob-

lem. A sketch of the geometry and the arrangement of variables in the interface vicinity are depicted in Fig. 2.

The reduction of the multidomain continuous formulation into its discrete form is based on the set of

transmission conditions in Eq. (18) applied to each node belonging to the interface. Indeed, this relation

relates the interface unknowns as a function of the homogeneous solution ~Ui and the set of harmonic exten-

sions �Uip defined on each node belonging to the interfaces. Thus, after the spatial discretization of each sub-

domain, the numerical procedure is straightforward: it is sufficient to compute the CIM from each harmonic

extensions, and then to clear up the interface values from each homogeneous solution and the CIM.
The numerical procedure is presented below in the present illustrative case, in which it is assumed that the

two subdomains X1 and X2 are discretized using, respectively, n1x · n1y and n2x · n2y nodes. In that manner,

the whole set of spatial compact operators is introduced. For example, dpu1;x and dpu2;x are the derivative oper-
ators defined on the staggered grid and, respectively, associated with the subdomains X1 and X2. Definitions

and notations of the compact operators are detailed in Appendix A. Moreover, the interface nodes of X1

must have the same location as the interface nodes of X2: that implies n1y = n2y (see Fig. 2). In this case

the numerical multidomain procedure starts by initializing the Helmholtz solver on each subdomain, like

in the single domain approach (see Section 2.1 and Appendix B). Thus, the discrete definition of each Poisson
solver permits to compute each harmonic extension associated with each node belonging to the interface:
o2

ox2
�Uik þ o2

oy2
�Uik ¼ 0 in Xi;

Bi
�Uik ¼ 0 on Ci

�UikðcpÞ ¼ dip for cp 2 � i:

ð20Þ
From this set of harmonic extensions, the jumps of normal derivative are evaluated on the node interfaces to

construct the CIM. In the present illustrative case, which includes only one interface discretized in K nodes,

this stage is given by:
Ω1 Ω2

Fig. 2. Arrangement of pressure nodes at the corner and interface vicinities.
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Nij ¼ dpu1;x �U1i

� �
nx�1=2;j

� dpu2;x �U2i

� �
3=2;j

1 6 i; j 6 K: ð21Þ
It may be noted that in the context of time discretized equations, each elliptic problem Eqs. (3) and (5) is

time independent, and then harmonic extensions and the CIM are computed once and for all in the prepro-

cessing stage.
Then, the problem defined on the whole domain is cleared up in the processing stages, which is composed

of three internal stage. The first one, called the first pass, consists in solving the set of problems on each

subdomain i = 1,2, with vanishing interface conditions:
o2

ox2
~Ui þ o2

oy2
~Ui ¼ SjXi

in Xi;

Bi
~Ui ¼ gjCi

on Ci;

~Ui ¼ 0 on � i:

ð22Þ
From the previous homogeneous solutions, the column vector H can be computed. Herein, H is given by:
Hj ¼ � dpu1;x ~U1

� �
nx�1=2;j

þ dpu2;x ~U2

� �
3=2;j

1 6 j 6 K: ð23Þ
Then, the linear system which enforces the continuity of the first normal derivative through the interface, is

solved to clear up the interface unknowns. This is achieved as follows:
K ¼ N�1H ; ð24Þ
where the CIM is inversed during the preprocessing stage. The direct method supplies the exact solution if

one disregards rounding errors. The CIM inversion does not lead to any difficulty, except for the singular

Poisson–Neumann problem in which some special attentions are needed. This point will be discussed in the

next section.

Finally, after getting back the interface values, the whole solution is obtained by solving each problem

defined on each subdomain Xi with the updated interface values:
o2

ox2 Ui þ o2

oy2 Ui ¼ SjXi
in Xi;

BUi ¼ gjCi
on Ci;

Ui ¼ K; on � i:

ð25Þ
The former stage is called the second pass. Some properties on the continuity of the solutions obtained with

the multidomain method need to be clarified. In fact, we postulated on the continuity of the Helmholtz

solutions across the interface, through the transmission conditions in Eq. (12). Obviously, after discretizing

each problem on the different subdomains, the previous transmission conditions have a meaning different
from its continuous formulation. These conditions have to be interpreted in a discrete sense given by the

considered discretized interpolation and derivation (see Appendix A).

So, because of the boundary conditions of each monodomain solver are prescribed for the second pass at

the interfaces, the exact continuity (regardless rounding errors) of U across the interface is definitely satis-

fied. The continuity of the normal derivative across the interface depends directly on the accuracy of solving

the linear system (19). This has mainly motivated the use of a direct method in the present work, all the

more since no problem was observed on the conditioning of the CIM. This point will be discussed in the

numerical experiments containing a large number of subdomains in Section 3.4.
As expected, the CIM inversion is not feasible for the singular Poisson–Neumann problem. The next

section concentrates onto this problem in the projection method, since the singularity of this problem arises

from the violation of the compatibility condition.
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2.2.3. The Poisson–Neumann problem

The Poisson–Neumann problem defined by Eq. (5), is well known to be a singular problem. In practice,

this essential difficulty is often overlooked, and a solution is found by iterative technique. Thus, a conver-

gent solution cannot be found if the compatibility condition is not fulfilled [22]. In the framework of the

multidomain method, the Poisson–Neumann problem was found to exhibit its singularity through the
continuity influence matrix, and not through the discrete Poisson operators described in the monodomain

section. Using the influence matrix method in order to enforce zero boundary divergence, Madabhushi

et al. [23] observed a similar behaviour: the resulting influence matrix was singular. As suggested by Tuck-

erman [24], they constructed a modified influence matrix by replacing the null eigenvalues by any non-zero

values. However, in the multidomain case, this regularization procedure leads to a discontinuous solution.

In fact, as in the monodomain context, the problem is successfully cleared up by enforcing the compatibility

condition of the Poisson–Neumann problem. This procedure is detailed hereafter. In the preprocessing

stage, the CIM of the Poisson–Neumann problem has to be diagonalized:
N ¼ P�1DP ; ð26Þ

where D is the diagonal matrix, with a null value denoted by the index k0, and P is the matrix containing the
eigenvectors of N. Thus, the solution of the linear system is straightforward since:
DkkðPKÞk ¼ ðPHÞk 1 6 k 6 K: ð27Þ

However, since Dk0k0 ¼ 0, the problem is only solvable if ðPHÞk0 ¼ 0. In this case, the problem admits a

solution up to an arbitary additive constant, which is consistent with the physical nature of the pressure

for incompressible flows. A sufficient condition for finding a solution is that the compatibility condition
has to be fulfilled. This property is crucial for the projection decomposition domain. In fact, if the com-

patibility condition is not satisfied, the projection stage Eq. (4) is performed with a discontinuous gradi-

ent of the modified pressure / (across the interfaces), leading to unsuitable discontinuity on the final

velocity field.

In the present work, the derivative operators are based on fourth-order compact scheme described by

Lele [4]. These schemes must be tuned to satisfy the compatibility condition in a discrete sense [4,6].

Instead of weighting the derivative operators with coefficients, a renormalization technique is preferred

to enforce the mass flow balance on the provisional velocity field. This issue is motivated by the fact
that the renormalization of the outflow is inevitable if convective conditions are used [30]. The outflow

and inflow mass rate are evaluated with a quadrature formula compatible with the compact fourth-

order discrete derivative dpu [25]. For this discrete derivative, the compatible quadrature formula is

given by:
Q ¼
Xn
i¼1

wifi ð28Þ
with the weighting coefficients wi:
w1 ¼ wn ¼ 1;

w2 ¼ wn�1 ¼
13

12
;

w3 ¼ wn�2 ¼
7

8
;

w4 ¼ wn�3 ¼
25

24
;

w ¼ 1 5 6 i 6 n� 4:

ð29Þ
i
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3. Numerical experiments

The present section is devoted to assess the compact scheme PDM, which was previously presented.

First, temporal and spatial accuracies of the compact scheme PDM are checked by comparison with an

analytical solution of the Navier–Stokes equations (the decaying vortices). Then, three benchmark prob-
lems are investigated: the steady lid-driven cavity, the steady flow over a backward-facing step and the

unsteady flow over a square prism. These three problems are chosen for their detailed description in the

literature. Moreover, the flow past a square cylinder is a good challenge because of its unsteady vortex

shedding.

3.1. Decaying vortices

In the following numerical experiments, we prove that the present compact scheme PDM does not dete-
riorate temporal and spatial accuracies. This objective is reached by matching the numerical solution with

an analytical solution of the Navier–Stokes equations. The retained analytical solution is the unsteady flow

of decaying vortices, namely:
uðx; y; tÞ ¼ � expð�2tp2=ReÞ cosðpxÞ sinðpyÞ;
vðx; y; tÞ ¼ expð�2tp2=ReÞ sinðpxÞ cosðpyÞ;
pðx; y; tÞ ¼ �1

2
expð�4tp2=ReÞðcosðpxÞ2 þ cosðpyÞ2Þ:

ð30Þ
Simulations are carried out in a square domain �1 6 x, y 6 1 which is partitioned in four square subdo-

mains of unit length. Accuracy tests are performed with a Reynolds number fixed at Re = 10. This solution

was also selected by previous authors [14,26] to test the accuracy of their numerical methods.

In the first part, we have reminded that the classical projection method of Kim and Moin ensures a sec-
ond-order accuracy in time. To verify that the present compact schemes PDM retains the second-order

accuracy in time, computations were performed using fine uniform mesh in both direction (h = 1/58).

The maximum relative error in u, v and p at dimensionless time of 0.3 is plotted in Fig. 3 as function of
∆t

ε m
ax

0.002 0.004 0.006 0.008 0.01
10-5

10-4

10-3

u
v
p

Fig. 3. Maximum relative error of the velocity components and the pressure as function of the time step.
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the time step. As expected, Fig. 3 shows that the present method is truly second-order accurate in time for

velocity variables.

For the pressure evaluated with Eq. (6), a first-order accuracy is observed. This behavior is in accordance

with recent work of Brown et al. [18]. They proved, using the normal mode analysis, that the projection

scheme of Kim and Moin is second-order for velocity and pressure, but in practice the pressure variable
exhibits only a first-order accuracy.

The spatial accuracy is checked on both uniform and non-uniform meshes. With the uniform grid test,

the maximum relative error is computed for different grid mesh spacings chosen over the range 1
20
6 h 6

1
60
.

With the non-uniform grid test, the mesh is refined near the interfaces and close to the physical boundaries.

The node distribution and the metrics are computed for each subdomain from the following coordinate

transform mapping [30]:
y ¼ n
1� tanh cðn� ~yÞ

tanh cn

� �
; ð31Þ
where the parameters c and n control, respectively, the grid stretching and the inflexion point. These

parameters are determined in such a way that the finest grid (located on each boundary) is set to
0.6h, h being the uniform grid mesh spacing of the computational domain. In all computations, the

time step is refined proportional to the grid spacing. The maximum relative error �max, for the

flow variables u, v and p at the dimensionless time of 0.3, is plotted in Fig. 4 versus the mesh

refinement.

Fig. 4 shows that the present method are indeed fourth-order accurate for all flow variables, and for both

uniform and non-uniform grids.

In brief, the compact scheme PDM preserves the temporal accuracy of the projection scheme of Kim and

Moin, as well as the spatial accuracy of the fourth-order compact scheme.
N
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u (uniform mesh)
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Fig. 4. Maximum relative error of the velocity components and the pressure as function of the mesh refinement.
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3.2. The two-dimensional lid-driven cavity flow

The lid-driven flow in a two-dimensional cavity is among the well-established benchmark problem used

to check the reliability of computational schemes. It was used by many authors and accurate solutions are

available in the literature [27–29]. This problem consists in solving the Navier–Stokes equations in a unit
square domain where the upper boundary moves with an uniform velocity (u = 1, v = 0). The no-slip

boundary conditions are applied elsewhere (u = 0, v = 0). The domain is partitioned into four identical sub-

domains (see Fig. 5).

The grid sensitivity of the solution at the Reynolds number Re = 400 is achieved by performing different

simulations where the uniform mesh grid spacing Dh is chosen among the following values:
1
20
; 1
30
; 1
40
; 1
80

and 1
130
. The vertical velocity v versus the abscissa at mid-height (y = 0.5) and the horizontal

velocity u versus the ordinate at x = 0.5 are plotted in Fig. 6.
Fig. 5. Cavity flow: geometry and subdomains.
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Fig. 6. Steady state velocity profiles in the lid-driven cavity at mid-height and mid-length (Re = 400).
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The discrepancies between results obtained with grid mesh spacings beyond 1
80
are not meaningful. Con-

sequently, the lid-driven cavity flow solution shows a grid-independent character beyond a grid mesh spac-

ing lower than 1
80
. It may be also concluded that our results are close to those obtained by Ghia et al. [27]

when the grid mesh spacing is sufficiently small. Moreover, the values plotted in Fig. 6 are located on the

interfaces of the partitioned domain (see Fig. 5). This shows the continuity properties through the interfaces
are correctly treated. Streamlines and vorticity fields plotted in Fig. 7 match very well with the earlier inves-

tigations of Wan et al. [29].
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Fig. 7. Contour plots of streamline and vorticity for the lid-driven cavity flow. (Re = 400). (a) Streamlines. (b) Vorticity.
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Two high Reynolds number computations were performed on the finest grid (h ¼ 1
130
) for the Reynolds

numbers Re = 2500 and Re = 5000 (see Fig. 8).

At these Reynolds numbers, the flow is still steady: Peng et al. [28] showed that unsteady pattern of the

lid-driven cavity occurs with the first Hopf bifurcation at a Reynolds number Re = 7402. For the Reynolds

numbers Re = 2500 and Re = 5000, the streamline plots are in accordance with the results of Wan et al. [29].
Four circulations occur: near the center of the cavity for the biggest circulation, and in both bottom cor-

ners. A small circulation can be also seen on the upper left side corner. It should be pointed out that no

discontinuity occur on the primitive variables or on deduced variables like streamline or vorticity. That

proves the robustness of the present compact scheme PDM.
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3.3. Flow over a backward-facing step

The former section was devoted to show the ability of the compact scheme PDM to compute accurately

the solution of the lid-driven cavity. However, this benchmark seems tricky since exact mass balance is en-

forced within the boundary conditions. Thus, the compatibility condition is systematically fulfilled at each
time step. In contrast, the flow over a backward facing step involves an outflow region, which is discretized

with convective boundary conditions. Hence, this test case is a relevant problem to check the validity of the

renormalization procedure described in the first part (Eq. 28).

The geometry of the domain and its partition are shown in Fig. 9.

By denoting h the step height, the upstream section have a length of 4h and a height of h. The height of

the downstream channel is 2h and its length is 20h. Thus, the selected expansion ratio is 2:1 allowing com-

parisons with the literature [29–31]. By denoting Re the Reynolds number based on the step height h and

the averaged inlet velocity U0, the reattachment length xr (see Fig. 9) versus the Reynolds number Re is
investigated over the range of 100–600. A wall boundary condition is imposed at the upper and lower

boundaries, whereas parabolic and constant inlet profiles are prescribed in order to compare with some

classical results [30,31] and more recent work [29].

The streamwise direction (ox) is uniformly discretized with 280 nodes resulting in a grid spacing of 3
35
. In

the vertical direction, the mesh is refined near the step and close to the walls. The non-uniform grid is ob-

tained from Eq. (31) with a uniform grid spacing fixed to 1
50
: the parameters c and n are computed to set the

finest grid at 0.009 close to the step and near the upper and lower walls. For the outflow region, a convective

boundary condition is used to prescribe each component of the outflow velocity. This non-reflective bound-
ary condition is based on the hyperbolic convection equation:
oui
ot

þ uc
oui
ox

¼ 0; ð32Þ
where the convective velocity uc is deduced from the bulk velocity. This boundary condition was success-
fully used by Le et al. [30]: they proved the numerical stability over the Reynolds number range 100–1000.

However, if no special attention is paid, this non-reflective boundary condition leads to a violation of the

compatibility condition which could be overcome with the tuned renormalization procedure previously

developed in Section 2.2.3. It should be pointed out, that without the renormalization procedure, the Pois-

son–Neumann problem is anyway not correctly solved, leading to a discontinuous velocity field at the

interfaces.

Streamlines of few selected Reynolds numbers are depicted in both Figs. 10 and 11.

Fig. 10 corresponds to the parabolic inlet profile whereas the second Fig. 11, corresponds to the constant
inlet profile. The flow topology is fairly similar for both prescribed inlet conditions. However, some discrep-

ancies may be noted on the reattachment lengths of the primary circulation. In fact, as it is shown in

Table 1, the reattachment lengths for the parabolic inlet case are much higher than the constant inlet case.
Fig. 9. Flow over a backward-facing step: geometry and partition.
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The reattachment lengths versus the Reynolds number, obtained from the present compact scheme

PDM, are depicted in Fig. 12.

Some classical results of the literature [29–31] are also plotted, allowing quantitative comparisons. If the

parabolic inlet profile is prescribed, the reattachment lengths curve is contained between experimental

results of Armaly et al. [31] and numerical solutions of Le et al. [30]. The bad fitting between experimental

results of Armaly et al. [31] and numerical solutions can be explained with the well understood three-dimen-

sional effects of the experiments. The reattachment lengths obtained with the numerical procedure of Le
4 - 2 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Reattachment length versus the Reynolds number
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-2 0 2 4 6 8 10 12 14 16 18 20 - 4 - 2 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

1

2

(18 20

. (a)Re= 100. (b)Re= 300. (c)Re= 500.



Re

x r/h

250 500
2

4

6

8

10

12

14

16 present results (parabolicinlet)
present results (constantinlet)
Wan et al. (2002)
Armaly et al. (1983)
Le et al. (1994)

Fig. 12. Reattachment length versus the Reynolds number.

268 S. Abide, S. Viazzo / Journal of Computational Physics 206 (2005) 252–276
et al. [30] agrees more with our results than those published in [31]. However, some significant differences

between these results still remain which may be cleared up by the considered geometry. Indeed, Le et al. [30]
considered a rectangular domain in contrast with the present geometry which includes the upstream section.

Wan et al. [29] gave some results on a similar geometry, but with a constant inlet profile. As it is shown in

Fig. 12, if a constant inlet profile is prescribed, our results are very close to those of [29].

3.4. Flow past a square prism

The flow around a square prism is investigated to assess the present compact scheme PDM in a more

complex flow. This classical benchmark was retained because of the unsteady behavior of the solution
which occurs when the Reynolds number is above a critical value in the range over 54–70 [32–34]. The se-

lected geometry is similar to the one of Breuer et al. [32]: it is composed of a square cylinder with a diameter

D centered inside a plane channel (height H) with a blockage ratio fixed at B = 1/8. The channel length is

fixed to L/D = 48 and the inflow length to l = L/4 (Fig. 13). As in the previous benchmark case, convective

boundary conditions are applied on the outflow boundary. The velocity inlet condition is a parabolic profile

with the maximum velocity umax and no-slip boundaries are applied on the surface of the square cylinder

and both on upper and lower boundaries of the computational domain. The goal of the present simulations

is not to study precisely the flow past a square cylinder, but only to test our numerical scheme. Conse-
quently, we focus on the selected Reynolds number Re = 100. The interest results are the drag coefficient

Cd and the Strouhal number St = fD/umax that characterizes the vortex shedding frequency.

The whole domain is partitioned into 20 subdomains (see Fig. 13). The downstream channel is decom-

posed into several subdomains to tackle the high aspect ratio.

Computations were carried out on two different meshes summed up in Table 2. These meshes are refined

near the walls of the square cylinder and both on upper and lower boundaries. The analytical mapping Eq.

(31) is used to refine independently each subdomain grid near boundaries.

The present compact scheme PDM is based on a direct inversion of the CIM, and consequently its well-
conditioning is a relevant question for large dimension problems. In order to demonstrate that the CIM is



Fig. 13. Flow past a square cylinder: configuration and partition.

Table 2

Mesh size in each subdomain – nxi and nyj are, respectively, associated with the number of pressure node of the ith subdomain

beginning from the inlet and the jth subdomain from the upper channel wall

nx1 nx2 nx3 nx4 nx5 nx6 nx7 ny1 ny2 ny3

Mesh I 42 42 62 50 40 40 40 32 62 32

Mesh II 42 42 62 50 40 40 40 62 102 62

Table 3

Maximum jump of the normal derivative of the modified pressure versus the CIM pressure dimension

CIM dimension Ir

Mesh I 1124 · 1124 2.95 · 10�13

Mesh II 1644 · 1644 5.69 · 10�13
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well-conditioned, the regularity of the modified pressure U is checked for each simulation. From Section

2.2.2, it is obvious that the regularity estimator Ir of the modified pressure is defined by the infinite norm

of the jump of the normal derivative across each node belonging to the interfaces. Table 3 represents the

maximum value of the jump during the two simulations versus the dimension of the CIM pressure for

the two considered grids. The smallest range of the regularity estimator proves that the direct inversion

of the Steklov–Poincaré system is correctly performed. Due to the well conditioning of the CIM, no signif-

icant effect of the subdomain ordering was observed on the solution. Hence, the use of compact schemes is a

real advantage in comparison with spectral methods in which the conditioning of the CIM is severely
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deteriorating with increasing the number of subdomains even if preconditioning techniques are applied [3].

The use of iterative solvers in the case of spectral methods with a large number of subdomains becomes

inevitable but may be questionable in term of CPU time if spectral accuracy is nevertheless retained.

The temporal evolution of the vorticity and streamlines over one complete vortex shedding cycle of dura-

tion T is shown in Fig. 14.
Two-dimensional structures are formed behind the square, and then convected on the wake of the square

prism. The visual sequence of vorticity shows the vortex generation phenomenon called Von Karman

vortex street. It is interesting to observe that the domain partition does not disturb eddies transport phe-

nomenon. Moreover, it should be pointed out the excellent vorticity behavior through the interfaces

although no continuity constraint is directly prescribed on the vorticity variable. This last variable is com-

puted from the velocity field and that confirms the robustness of the present domain decomposition

method.

A quantitative description of the fluid flow feature is made by computing the drag coefficient Cd and the
Strouhal number St. The drag coefficient is deduced from the integration of viscous and pressure strain act-

ing on the square prism in the (ox) direction which are non-dimensionalized with the dynamic pressure

1=2qu2max. The Strouhal number is defined by fD/umax, in which the characteristic frequency f is determined

by a spectral analysis of a time sample of the viscous drag. The power density spectrum is shown in Fig. 15.

For the fine and coarse meshes the Strouhal numbers and mean drag coefficient are identical, indicating

that the grid independence character is reached for this value. These values are compared to the numerical
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Fig. 15. Power spectrum of the time series of the viscous drag.

Table 4

Comparison of different physical parameters for flow past a square prism Re = 100

Cd St

Present study (grid I) 1.389 0.143

Present study (grid II) 1.388 0.143

Breuer et al. [32] 1.37 0.139
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results of [32] (see Table 4), which were obtained by using lattice Boltzman and finite volumes discretiza-

tions. The Strouhal number obtained with the present study is slightly over-estimated in comparison with

[32]. The mean drag coefficient is also close to the value given in [32]. This test shows the ability of the pres-

ent method to deal with unsteady laminar flow.
4. Conclusion

A direct projection decomposition method based on a fourth-order compact scheme defined on a fully

staggered grid was presented. The originality of the method lies in the differential formulation of each

Helmholtz/Poisson multi-domain problem resulting of the classical Kim and Moin projection method.

The difficult Poisson/Neumann problem was correctly resolved by enforcing the compatibility condition

and using a diagonalization method of the continuity influence matrix. Moreover, since the flow variables

are located on a fully staggered grid, the incompressibility constraint is exactly enforced in the whole inner

domain. The present compact scheme PDM enables the computation of 2D laminar flows in geometries

composed of multi-connected rectangular domains. This method possesses a strong potentiality for high
performance computing: the non-iterative treatment of the transmission conditions would yield a true par-

allel algorithm, in which the time communications between processors will be reduced. Besides, in the

numerical experiments, some detailed two-dimensional problems were solved to show the robustness and
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the reliability of the present compact scheme PDM. Matching our results with an analytical solution of the

Navier–Stokes equations showed that the compact scheme PDM preserves the expected theoretical accu-

racy of the temporal and spatial discretization. The classical lid-driven cavity flow was investigated and

a good agreement was obtained with the literature. The validity of the renormalization procedure to ensure

the compatibility condition was verified for the backward-facing step flow. Finally, the unsteady flow past a
square prism proved that the interface discretization has not modified the vortex shedding as well as the

well conditioning of the numerical method despite the large interface unknowns. That indicates the present

compact scheme PDM is an accurate, reliable, and robust approach for dealing with incompressible two-

dimensional laminar flows in geometries composed of multi-connected rectangular domains.
5. Future work

The two-dimensional formulation of the projection decomposition method was established and checked

in this paper. Our aim being to simulate three-dimensional turbulent flows, the next stage will consist to the

extension to a three-dimensional formulation. An obvious way would consist in discretizing the third direc-

tion as the two first. However, in this case, the CIM matrix dimension will rapidly increase and become too

huge to be solved efficiently. In future work, only turbulent flows with one homogeneous direction will be

considered by assuming a periodicity in this direction. This assumption allows the use of pseudo-spectral

methods, and so, the three-dimensional problem will reduce to a series of two-dimensional problems asso-

ciated with each wavenumber.
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Appendix A. Compact difference schemes

Compact difference schemes allow the discrete evaluation of derivative and interpolation operators.
Their formulations are based on a set of implicit relations obtained with Taylor series expansion. To define

the whole discrete operators which are used, we consider the typical discretization of the interval [0,Ln] on a

staggered grid. Thus, the velocity and pressure node locations are, respectively, defined by niþ1
2
¼

ði� 1Þh and ni ¼ ði� 3
2
Þh, with the uniform grid spacing h ¼ Ln

Nn�2
. All compact schemes can be expressed

by the following set of linear algebraic equations:
Hf 0 ¼ Af ; ðA:1Þ

where each row represents an implicit relation between the derivatives and function values for computa-

tional nodes. These relations are described at the end of this appendix. These equations can also be written

in an equivalent explicit form by
f 0 ¼ H�1Af ¼ dnf ; ðA:2Þ

where dn is not necessarily compact. The notations duun ; dpun and dupn correspond to the first derivative with

respect to n, whereas ipun and iupn are the discrete interpolation operators and duunn is the second derivative with

respect to n. The first superscript is associated with the node location of the known function and the second



Table A.1

Compact scheme coefficients

Schemes Inner nodes Boundary nodes

a a a a b c d

duun (A.3) 1
4

1
4

2 � 5
2

2 1
2

–

duunn (A.8) 1
10

1
4

11 13 �27 15 �1

dupn (A.4) 1
22

12
11

23 �25 26 �1 –

dpun (A.5) 1
22

12
11

23 �1 2 �1 –

ipun (A.6) 1
6

2
3

5 15
4

5
2

� 1
4

–

iupn (A.7) 1
6

2
3

1 1
4

3
2

1
4

–
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refers to the unknown evaluation location. For example, dpun is the first derivative operator from pressure

nodes toward velocity nodes. Hereafter, the implicit relations, defining each operator and including inner

and boundary nodes, are described hereafter (the coefficients are itemized in Table A.1):
duun
af 0

i�1 þ f 0
i þ af 0

iþ1 ¼ a fiþ1�fi�1

2h

f 0
1 þ af 0

2 ¼
af 1þbf 2þcf 3

h

(
; ðA:3Þ

dupn
af 0

i�1 þ f 0
i þ af 0

iþ1 ¼ a
fiþ1=2�fi�1=2

h

f 0
1 þ af 0

2 ¼
af 3=2þbf 5=2þcf 7=2

h

(
; ðA:4Þ

dpun
af 0

i�1=2 þ f 0
iþ1=2 þ af 0

iþ3=2 ¼ a fiþ1�fi
h

f 0
3=2 þ af 0

5=2 ¼
af 1þbf 2þcf 3

h

(
; ðA:5Þ

iupn
afi�1 þ fi þ afiþ1 ¼ aðfiþ1=2 � fi�1=2Þ
f1 þ af2 ¼ af 3=2 þ bf 5=2 þ cf 7=2

(
; ðA:6Þ

ipun
afi�1=2 þ fiþ1=2 þ af 0

iþ3=2 ¼ aðfiþ1 � fiÞ
f3=2 þ af5=2 ¼ af 1 þ bf 2 þ cf 3

�
; ðA:7Þ

duunn
af 00

i�1 þ f 00
i þ af 00

iþ1 ¼ a fiþ1�2f iþfi�1

h2

f 00
1 þ af 00

2 ¼ af 1þbf 2þcf 3þdf 4
h2

(
: ðA:8Þ
Appendix B. Discrete formulation of the Helmholtz/Poisson problem

This appendix describes in details the methodology used to formulate the discrete Helmholtz/Poisson

problem with compact scheme discretizations. We focus on the discrete Poisson–Neumann problem defined

on one subdomain. The spatial discretization of the modified pressure equation (7) on the pressure grid

yields:
Xnx
l¼1

bx
ilUl;j þ

Xny
n¼1

by
jnUi;n ¼ Si;j; ðB:1Þ
where the discrete operators associated with the second derivative in each direction are defined by
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bx
il ¼

Xnx�1

q¼1

dupx;iqd
pu
x;ql;

by
jn ¼

Xny�1

q¼1

dupy;jqd
pu
y;qn:

ðB:2Þ
In the case of homogeneous Neumann boundary conditions, boundary nodes can be expressed as function

of inner nodes:
U1;j ¼ rx
1nx

Xnx�1

i¼2

dpunxiUi;j þ rx
nxnx

Xnx�1

i¼2

dpu1iUi;j;

U1;j ¼ rx
1nx

Xnx�1

i¼2

dpunxiUi;j þ rx
nxnx

Xnx�1

i¼2

dpu1iUi;j;

Ui;1 ¼ ry
1ny

Xny�1

j¼2

dpuny jUi;j þ ry
nyny

Xny�1

j¼2

dpu1jUi;j;

Ui;ny ¼ ry
11

Xny�1

j¼2

dpuny jUi;j þ ry
ny1

Xny�1

j¼2

dpu1jUi;j;

ðB:3Þ
where
pu
rx
11 ¼

dpu11
dpunx1d

pu
1nx � dpunxnxd

pu
11

; rx
1nx

¼
�d1nx

dpunx1d
pu
1nx � dpunxnxd

pu
11

;

rx
nx1

¼
�dpunx1

dpunx1d
pu
1nx � dpunxnxd

pu
11

; rx
nxnx

¼
dpunxnx

dpunx1d
pu
1nx � dpunxnxd

pu
11

;

ry
11 ¼

dpu11
dpuny1d

pu
1ny � dpunynyd

pu
11

; ry
1ny ¼

�dpu1ny
dpuny1d

pu
1ny � dpunynyd

pu
11

;

ry
ny1 ¼

�dpuny1
dpuny1d

pu
1ny � dpunynyd

pu
11

; ry
nyny

¼
dpunyny

dpuny1d
pu
1ny � dpunynyd

pu
11

:

ðB:4Þ
Eliminating boundary nodes in Eq. (B.1) with the above relations, the system may be rewritten with only
inner nodes:
Xnx�1

l¼2

xx
ilUl;j þ

Xny�1

n¼2

xy
jnUi;n ¼ F i;j; ðB:5Þ
where xx and xy are the modified operators defined by
xx
il ¼ bx

il þ bx
i1 rx

1nx
dpunxl þ rx

nxnx
dpu1l

� �
þ bx

inx
rx
11d

pu
nxl þ rx

nx1
dpu1l

� �
;

xy
jn ¼ by

jn þ by
j1 ry

1nyd
pu
nyn

þ ry
nyny

dpu1n
� �

þ by
jny

ry
11d

pu
nyn

þ ry
ny1d

pu
1n

� �
:

ðB:6Þ
Finally, the diagonalization stage is applied on the system Eq. (B.5) and the boundary nodes are recovered

with Eq. (B.3).
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